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Structural transitions in one-dimensionally confined one-component plasmas
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Layered structures occurring in strongly coupled one-dimensionally confined one-component plasmas are
studied by means of Monte Carlo simulations. A series of structural transitions with alternating square and
hexagonal symmetry is observed with increasing the width of the system. For closer interlayer separation, the
square type of lattice~bcc in$100% or $110% plane! is dominating, whereas for wider separations the hexagonal
~fcc in $111% plane or hcp! patterns are observed.
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Two-dimensional~2D! and quasi-two-dimensional~quasi-
2D! Coulomb systems, i.e., charged many-particle syste
confined in one and infinite in the two other directions,
tracted considerable interest of researchers in recent dec
Relevant physical examples are charged colloids geom
cally confined in a thin layer between two plates@1#, dusty
plasmas trapped in one-dimensional~1D! potential profiles
@2#, planar ion structures in Penning traps@3#, electronical
inversion layers and bilayers in semiconductors@4–6#, etc.
The distinguishing feature of these systems is their capab
to form strongly correlated condensed state at strong c
pling.

The basic reference model for strongly coupled Coulo
systems is the model of one-component plasma~OCP!. In
this model, only one sort of charges is dynamically or sta
tically taken into account, whereas the total compensa
charge is related to the immobile neutralizing backgroun

While the structure of infinite unbounded strong
coupled OCP is understood currently rather well@7,8#, the
behavior of 2D and quasi-2D OCP remains much less ex
ined and is the focus of intensive investigations, in particu
by means of Monte Carlo~MC! and molecular dynamics
~MD! computer simulations@9–14#. The numerical studies
of 2D hexagonal Coulomb lattices@9,10# have demonstrated
good agreement with the experiments of C. Grimes and
Adams on the melting of 2D Wigner lattice formed by ele
trons on the surface of liquid helium@11#. Computer simula-
tions performed for 1D-confined systems, i.e., with the
viation from the strictly 2D geometry, evidence th
formation of layered structures in strongly coupled OCP
this case@12#. Though many of the properties of these sy
tems have been elucidated, the detailed intrinsic structur
the layers remains an open question. According to the th
retical predictions@13# based on minimizing the energy o
the system~i.e., for zero temperature! evaluated within the
fluid theory, with increasing the width of 1D confined OC
one should expect a series of structural transitions with a
nating square and hexagonal symmetry. Similar transiti
were observed in experiments with ions in Penning traps@3#,
charged colloids@1#, and in numerical simulations of closel
packed hard spheres@15# confined in quasi-2D geometry
However, direct numerical evidence for these transitions
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mains up to now absent. The MD simulations of Ref.@12#
report only regular hexagonal intralayer structure of mu
layered systems.

In this paper, the results of microscopic MC simulatio
of strongly coupled OCP in quasi-2D geometry are p
sented. The aim of simulations is structure, in particular,
above question about the structural transitions in few-laye
systems.

Thus, the system under examination consists of one k
of pointlike charges in the immobile neutralizing bac
ground. The simplest case related to the quasi-2D geom
is that the background is uniform and occupies a volume o
finite width in Z direction (2H,Z,H) and infinite inXY
directions. Following the treatment conventional for M
simulations, we consider a basic rectangular configuratio
cell (0,X,Y,L,2H,Z,H) with a finite numberNp of
particles, which periodically repeats itself inXY directions.
The state of the system can be unambiguously specified
the two quantities, the dimensionless widthh52H/d and the
coupling G5e2/kBTd. The quantityd5L/ApNp has the
meaning of the average interparticle distance and is u
below as the length unit. Note, that in the case of one laye

FIG. 1. Transversal probabilty distributions for 1D-confine
OCP, G5500; ~a! h50.92 ~dashed line!, h51.11 ~dots!, h51.28
~solid line!; ~b! h52.73~solid line!, h53.13~dots!. The transitions
from one- to two-layered system, and from two- to three-laye
system occur at the pointsh.1.1 andh. 2.9, respectively.
©2003 The American Physical Society01-1
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the system, the quantitiesd and G coincide with those de-
fined for strictly 2D systems, whereas in the case ofK layers
they differ from the relevant intralayer parameters by
factor .AK. In order to allow for the long-range Coulom
interactions with the image particles, the method develo
in Ref. @16# for the computations of Ewald’s sums i
quasi-2D two-component plasmas is employed. As compa
to the expressions obtained in Ref.@16#, the allowance for
the interaction with the uniform background of the fini
width 2H in quasi-2D OCP results in only one essential a
ditional term in the potential energy,

U8

kBT
5

G

h (
i 51

Np

zi
2 , ~1!

which can be viewed as a confining oscillator field inZ di-
rection. Herezi5Zi /d is the dimensionlessZ-coordinate of
the i th particle.

Simulations were performed for the range of parame
G5300–600 andh50.02–4.8, which correspond to th
crystal structures with 1–3 layers. The structural proper

FIG. 2. An equilibrium MC configuration for two-layere
square structure~a!, (G5500, h51.28, Np5288) and the associ
ated 2D intralayer~b! and interlayer~c! radial distributions. The
points and the larger circles~a! relate to the different layers. Th
vertical impulses in~b! and~c! represent the scaled radial distrib
tions for an ideal bcc$100% lattice with the same spacing.
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were studied in terms of 2D radial intralayer and interlay
pair distribution functions and the 2D orientational order p
rameter for them-fold symmetry@17# defined as

Om5K U 1

NL
(

l

1

m (
k

eimu lkU L . ~2!

The inner sum in the above expression is taken over
bonds connecting thel th particle with all the nearest neigh
bors (u lk is the angle between such a bond and some fi
axis!, i.e., the particles at the distance less than the first m
mum r min in the radial intralayer distribution function; th
brackets^•••& denote the canonical averaging;NL is the
number of particles within the layer. The type of 2D symm
try within layers can be simply estimated by the avera
number of 2D nearest neighborsNn , which must be close to
4 or 6 for the square or hexagonal types of symmetry, resp
tively.

MC simulations were carried out for the canonical~NVT!
ensemble by using the conventional Metropolis algorith
@18# with the number of particles being within the rang

FIG. 3. An equilibrium MC configuration for two-layered hex
agonal structure~a!, (G5500, h52.42, Np5390) and the associ
ated 2D intralayer~b! and interlayer~c! radial distributions. The
points and the larger circles~a! relate to the different layers. The
vertical impulses in~b! and~c! represent the scaled radial distribu
tions for an ideal fcc$111% lattice with the same spacing.
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TABLE I. Structural properties of two- and three-layered systems obtained in MC simulationG
5500). Notation:h5width parameter,K5number of layers,S5structure,Nc52D coordination number,
Nn5average number of 2D nearest neighbors,O4 /O65orientational order parameter for fourfold/sixfol
symmetry,Np5number of particles in MC cell,D5ratio of the interlayer to the lattice spacing~defined by
the first maximum in the relevant radial distributions!. The absolute error in the computations of the ord
parameters does not exceed 0.015.

h K S Nc Nn O4 O6 D Np

2 bcc$100% 4 1.00a 0.50a

1.28 3.98 0.94 0.41 288
1.62 4.00 0.90 0.61 288

2 fcc$111% 6 1.00a 0.82a

2.42 6.00 0.90 0.90 390
2.73 6.00 0.90 1.05 112

3 bcc$100% 4 1.00a 0.50a

3.13 4.18 0.82 0.67 192

3 bcc$110% 4 0.78a 0.82a

~rhombic!
3.65 4.41 0.65 0.77 192

3 fcc$111% 6 1.00a 0.82a

4.26 6.00 0.88 0.87 168

3 hcp 6 1.00a 0.82a

4.26 6.00 0.87 0.87 168

a‘‘Ideal’’ lattices.
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Np5112–390. The relative error in the calculation of t
Coulomb energy was controlled to be less than 1026, which
was achieved by using appropriate number of the wave v
tors in the inverse space and the values of the splitting
rameter in computations of 2D Ewald sums. In most of
simulations, the canonical averaging was performed o
.2000–5000 statistically independent configurations.

The results of simulations are presented in the figu
The most remarkable result is the observation of transiti
in the internal structure of the layers occurring with incre
ing the width of the system. In Fig. 1, the transversal pro
02540
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er
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s
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ability ~normalized density! distributions are displayed as
function of the widthh. The transitions from one- to two
layered and from two- to three-layered system occur near
points h.1.1 andh.2.9, respectively. The structure ob
tained for one-layered systems is well known, it is a sim
hexagonal lattice quite similar to that observed in strictly 2
case@9,10#. Just above the pointh51.1, the system crystal
lizes in a two-layered square structure, which is a feature
a bcc lattice in$100% plane. An equilibrium configuration
obtained in MC simulations~a perfect lattice! and the asso-
ciated intralayer and interlayer radial distribution functio
idth,
FIG. 4. Equilibrium MC configurations for three-layered structures,G5500. Structural changes are observed with increasing the w
~a! bcc$100%, h53.13, ~b! bcc$110% ~rhombic!, h53.38, ~c! and ~d! the competing fcc$111% and hcp structures for the same widthh
54.26. The positions of particles are marked with points~the inner layer!, and with larger circles~the outer layers!.
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are given in Fig. 2. Comparison with distributions of an ide
bcc lattice clearly indicates this type of structure. The nu
ber of the nearest 2D neighbors computed for this region
close to 4, in agreement with the fourfold symmetry. Let
mention, that with increasing the width parameter, i.e., w
growing the interlayer separation, the structure acquire
deviation from square geometry~large-scale deformation!,
which is reflected by the changes in distribution functio
and in some decrease of the order parameterO4 ~see
Table I!.

Above the pointh.1.8, the system undergoes a transiti
to a hexagonal ‘‘honeycomb’’ structure with the same nu
ber of layersK52, which can be observed visually, Fig.
and is evidenced by the change in the position of the fi
minimum in the intralayer distribution function from 3.0 t
3.6. The associated number of the nearest 2D neighbor
creases therewith toNn56. In contrast to the square lattic
with dominating interlayer correlations, in the case of tw
layered hexagonal structure the intralayer correlations
more pronounced. The behavior of 2D distributions indica
that the latter hexagonal structure represents a piece o
lattice in $111% plane. A similar transition from the square
hexagonal structure is observed in three-layered syst
within the rangeh52.9–4.8, Fig. 4. Note that at larger in
terlayer separations, two competing hexagonal structu
with equal average energies are observed, fcc$111% and hcp,
as dependent on initial random configurations. This indica
that the type structure is determined by the interactions
tween the nearest layers only~i.e., the interaction betwee
the outer layers is negligible!. The intermediate deforme
square lattice consisting of elongated squares is better
fined in this case and can be regarded as the same bcc s
ture in $110% orientation, or, more generally, as a rhomb
lattice. The MC simulations performed for the rangeG
5300–600 resulted in similar structural properties, exc
that the radial distributions are broader for higher tempe
tures. Some information related to a number of selected r
is summarized in the table. The results of MC simulatio
correlate with the theoretical predictions of Ref.@13# and are
in very good agreement with the experiments with the pla
r-
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ion structures in Penning traps@3#, Fig. 5, representing the
most accurate implementation of OCP in 1D oscillator co
finement. The evident similarity of the results obtained w
the properties of other systems~charged colloids@1#, hard
spheres@15#! in quasi-2D geometry indicates that the stru
tural transitions under consideration are the general fea
of 1D-confined systems weakly dependent on the nature
repulsive interparticle interaction.

To conclude, layered structures occurring in strong
coupled one-dimensionally confined one-component plas
are studied by means of Monte Carlo simulations. A series
structural transitions with alternating square and hexago
symmetry is observed with increasing the width of the s
tem. For closer interlayer separation, the square type of
tice ~bcc in$100% or $110% plane! is dominating, whereas fo
wider separations the hexagonal~fcc in $111% plane or hcp!
patterns are observed.

FIG. 5. Structure of 1D-confined OCP. Comparison of the
sults of these MC simulations (G5300) and experimental data o
Ref. @3# (160,G,3150) recalculated for (z2h)-plane. The posi-
tions of layers are marked with symbols of triangles/squares~MC
simulations!, and */1 ~experiment! for the hexagonal/square typ
of symmetry, respectively.
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