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Structural transitions in one-dimensionally confined one-component plasmas
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Layered structures occurring in strongly coupled one-dimensionally confined one-component plasmas are
studied by means of Monte Carlo simulations. A series of structural transitions with alternating square and
hexagonal symmetry is observed with increasing the width of the system. For closer interlayer separation, the
square type of latticébcc in{100 or {110 plane is dominating, whereas for wider separations the hexagonal
(fcc in {113 plane or hcp patterns are observed.
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Two-dimensional2D) and quasi-two-dimensionéjuasi-  mains up to now absent. The MD simulations of Rdf2]
2D) Coulomb systems, i.e., charged many-particle systemeeport only regular hexagonal intralayer structure of multi-
confined in one and infinite in the two other directions, at-layered systems.
tracted considerable interest of researchers in recent decades.In this paper, the results of microscopic MC simulations
Relevant physical examples are charged colloids geometrPf strongly coupled OCP in quasi-2D geometry are pre-
cally confined in a thin layer between two plafdg, dusty ~ sented. The aim of simulations is structure, in particular, the
plasmas trapped in one-dimensioriaD) potential profiles —above question about the structural transitions in few-layered
[2], planar ion structures in Penning traf8, electronical Systems.
inversion layers and bilayers in semiconductpts-6], etc. Thus, the system under examination consists of one kind
The distinguishing feature of these systems is their capabilitpf pointlike charges in the immobile neutralizing back-
to form strongly correlated condensed state at strong cowground. The simplest case related to the quasi-2D geometry
pling. is that the background is uniform and occupies a volume of a
The basic reference model for strongly coupled CoulomHtinite width in Z direction (—H<Z<H) and infinite inXY
systems is the model of one-component plag®@&P. In directions. Following the treatment conventional for MC
this model, only one sort of charges is dynamically or statisSimulations, we consider a basic rectangular configurational
tically taken into account, whereas the total compensatingell (0<X,Y<L,—H<Z<H) with a finite numberN, of
charge is related to the immobile neutralizing background. particles, which periodically repeats itself XY directions.
While the structure of infinite unbounded strongly The state of the system can be unambiguously specified by
coupled OCP is understood currently rather W&lg], the  the two quantities, the dimensionless widitlh 2H/d and the
behavior of 2D and quasi-2D OCP remains much less exansoupling I'=e?/kgTd. The quantityd=L/ywN, has the
ined and is the focus of intensive investigations, in particularmeaning of the average interparticle distance and is used
by means of Monte CarlgMC) and molecular dynamics below as the length unit. Note, that in the case of one layer in
(MD) computer simulation§9—14]. The numerical studies
of 2D hexagonal Coulomb latticé8,10] have demonstrated 400 3
good agreement with the experiments of C. Grimes and G.
Adams on the melting of 2D Wigner lattice formed by elec- (o)
trons on the surface of liquid heliupil]. Computer simula-
tions performed for 1D-confined systems, i.e., with the de-
viation from the strictly 2D geometry, evidence the
formation of layered structures in strongly coupled OCP in
this casg12]. Though many of the properties of these sys-
tems have been elucidated, the detailed intrinsic structure of
the layers remains an open question. According to the theo-
retical predictiond13] based on minimizing the energy of
the system(i.e., for zero temperatuyesvaluated within the (b)
fluid theory, with increasing the width of 1D confined OCP,
one should expect a series of structural transitions with alter-
nating square and hexagonal symmetry. Similar transitions ]
were observed in experiments with ions in Penning ti&hs 000 14

charged colloid$1], and in numerical simulations of closely ~280  -180  -050 050 150 250
packed hard spherdd5] confined in quasi-2D geometry.  FiG. 1. Transversal probabilty distributions for 1D-confined
However, direct numerical evidence for these transitions reocp, I'=500; (a) h=0.92 (dashed ling h=1.11 (dotg, h=1.28
(solid line); (b) h=2.73(solid line), h=3.13(doty. The transitions
from one- to two-layered system, and from two- to three-layered
*Email address: obystr@bitp.kiev.ua, bystrenko@yandex.ru system occur at the points=1.1 andh= 2.9, respectively.
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FIG. 2. An equilibrium MC configuration for two-layered

.00

FIG. 3. An equilibrium MC configuration for two-layered hex-

square structurea), (I'=500, h=1.28, N,=288) and the associ- agonal structuréa), (I'=500, h=2.42, N,=390) and the associ-

ated 2D intralayer(b) and interlayer(c) radial distributions. The

ated 2D intralayerb) and interlayer(c) radial distributions. The

points and the larger circle®) relate to the different layers. The points and the larger circle@) relate to the different layers. The
vertical impulses inb) and(c) represent the scaled radial distribu- vertical impulses ir(b) and(c) represent the scaled radial distribu-

tions for an ideal bc§100 lattice with the same spacing.

the system, the quantities and I" coincide with those de-
fined for strictly 2D systems, whereas in the cas& ddyers

tions for an ideal fcd111} lattice with the same spacing.

were studied in terms of 2D radial intralayer and interlayer
pair distribution functions and the 2D orientational order pa-

they differ from the relevant intralayer parameters by therameter for them-fold symmetry[17] defined as

factor = /K. In order to allow for the long-range Coulomb

interactions with the image particles, the method developed 1 1
in Ref. [16] for the computations of Ewald’s sums in Onm=
guasi-2D two-component plasmas is employed. As compared

to the expressions obtained in REL6], the allowance for

k

— _ imé
NLZmze Ik

> . (2

the interaction with the uniform background of the finite The inner sum in the ab0\_/e expression is taken over the

width 2H in quasi-2D OCP results in only one essential ad-bonds co.nnectlng thigh particle with all the nearest ne|gh-

ditional term in the potential energy. bors (6 is the angle between such a bond and some fixed
' axi9), i.e., the particles at the distance less than the first mini-

U !
kT

> =

which can be viewed as a confining oscillator fieldZrdi-

rection. Herez;=2;/d is the dimensionlesg-coordinate of

theith particle. tively.

Np mum r i, in the radial intralayer distribution function; the
> 22, (1)  brackets(---) denote the canonical averaginly; is the

=1 number of particles within the layer. The type of 2D symme-
try within layers can be simply estimated by the average
number of 2D nearest neighbadxs,, which must be close to

4 or 6 for the square or hexagonal types of symmetry, respec-

Simulations were performed for the range of parameters MC simulations were carried out for the canoni@&VT)
I'=300-600 andh=0.02-4.8, which correspond to the ensemble by using the conventional Metropolis algorithm
crystal structures with 1-3 layers. The structural propertie$18] with the number of particles being within the range
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TABLE 1. Structural properties of two- and three-layered systems obtained in MC simulations (
=500). Notation:h=width parameterK=number of layersS=structure,N.=2D coordination number,
N,=average number of 2D nearest neighbddg,/Og= orientational order parameter for fourfold/sixfold
symmetry,N,=number of particles in MC celD =ratio of the interlayer to the lattice spaciidefined by
the first maximum in the relevant radial distribution$he absolute error in the computations of the order
parameters does not exceed 0.015.

h K S N N, 0O, Os D Np

2 bcd 100t 4 1.06 0.5¢%

1.28 3.98 0.94 0.41 288

1.62 4.00 0.90 0.61 288
2 fec{11L 6 1.06¢ 0.87

2.42 6.00 0.90 0.90 390

2.73 6.00 0.90 1.05 112
3 bcd 100t 4 1.06 0.5¢%

3.13 4.18 0.82 0.67 192
3 bcd110 4 0.78 0.872

(rhombig

3.65 4.41 0.65 0.77 192
3 fcc{11L 6 1.0¢ 0.82

4.26 6.00 0.88 0.87 168
3 hcp 6 1.00 0.82

4.26 6.00 0.87 0.87 168

&|deal” lattices.

p

Coulomb energy was controlled to be less than®avhich

N,=112-390. The relative error in the calculation of the ability (normalized densitydistributions are displayed as a
function of the widthh. The transitions from one- to two-

was achieved by using appropriate number of the wave vedayered and from two- to three-layered system occur near the
tors in the inverse space and the values of the splitting papoints h=1.1 andh=2.9, respectively. The structure ob-
rameter in computations of 2D Ewald sums. In most of thetained for one-layered systems is well known, it is a simple
simulations, the canonical averaging was performed ovehexagonal lattice quite similar to that observed in strictly 2D

=2000-5000 statistically independent configurations.

case[9,10]. Just above the poirit=1.1, the system crystal-

The results of simulations are presented in the figuredizes in a two-layered square structure, which is a feature of
The most remarkable result is the observation of transitiona bcc lattice in{100 plane. An equilibrium configuration
in the internal structure of the layers occurring with increas-obtained in MC simulationga perfect lattice and the asso-
ing the width of the system. In Fig. 1, the transversal prob-ciated intralayer and interlayer radial distribution functions
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FIG. 4. Equilibrium MC configurations for three-layered structuiés,500. Structural changes are observed with increasing the width,
(& bcd100, h=3.13, (b) bcd110 (rhombig, h=3.38, (c) and (d) the competing fcld11} and hcp structures for the same width
=4.26. The positions of particles are marked with poifit® inner layer, and with larger circlegthe outer layers

025401-3



RAPID COMMUNICATIONS

O. BYSTRENKO PHYSICAL REVIEW E67, 025401R) (2003
are given in Fig. 2. Comparison with distributions of an ideal 4.0 3
bcc lattice clearly indicates this type of structure. The num- o &
ber of the nearest 2D neighbors computed for this region, is g ox 2 *
close to 4, in agreement with the fourfold symmetry. Let us 2 20 Fa*‘ﬁ
mention, that with increasing the width parameter, i.e., with 2 e
growing the interlayer separation, the structure acquires a =~ #ddrnﬁ""
deviation from square geometiyarge-scale deformation © 004 2 sm O EE AR & g
which is reflected by the changes in distribution functions o th:\'q_%
and in some decrease of the order paramédgr (see S Boaay,
Table ). T 50 e,
Above the poinh=1.8, the system undergoes a transition 8 e
to a hexagonal “honeycomb” structure with the same num- ? ot
ber of layersk =2, which can be observed visually, Fig. 3, N 2.0 Ferrrrer e e R -

and is evidenced by the change in the position of the first 0.0 1.0 20 30 4.0 5.0

minimum in the intralayer distribution function from 3.0 to Width, h

3.6. The associated number of the nearest 2D neighbors in- g 5. structure of 1D-confined OCP. Comparison of the re-
creases therewith thl,=6. In contrast to the square lattice gjts of these MC simulationd’300) and experimental data of
with dominating interlayer correlations, in the case of two-Ref. [3] (160<T'<3150) recalculated forz—h)-plane. The posi-

layered hexagonal structure the intralayer correlations argons of layers are marked with symbols of triangles/squakts
more pronounced. The behavior of 2D distributions indicatesimulations, and */+ (experimenk for the hexagonal/square type

that the latter hexagonal structure represents a piece of fasf symmetry, respectively.
lattice in{111} plane. A similar transition from the square to

hexagonal structure is observed in three-layered system , . . .
within the rangeh=2.9—4.8, Fig. 4. Note that at larger in- I3n structures in Penning trap8], Fig. 5, representing the

terlayer separations, two competing hexagonal structure?oSt accurate "“.p'eme.m"’.‘“o!“ of OCP in 1D oscnl_ator con-
with equal average energies are observed1ft} and hcp, inement. The evident similarity of the result; obtained with
as dependent on initial random configurations. This indicateg1e propertle§ of other SVStenﬁsharge‘?' colloidg1], hard

that the type structure is determined by the interactions besPhered15)) in quasi-2D geometry indicates that the struc-
tween the nearest layers onfije., the interaction between tural tran3|_t|ons under consideration are the general feature
the outer layers is negligible The intermediate deformed Of 1D-confined systems weakly dependent on the nature of
square lattice consisting of elongated squares is better déepulsive interparticle interaction.

fined in this case and can be regarded as the same bcc struc-To conclude, layered structures occurring in strongly
ture in {110 orientation, or, more generally, as a rhombic coupled one-dimensionally confined one-component plasmas
lattice. The MC simulations performed for the range are studied by means of Monte Carlo simulations. A series of
=300-600 resulted in similar structural properties, excepstructural transitions with alternating square and hexagonal
that the radial distributions are broader for higher temperasymmetry is observed with increasing the width of the sys-
tures. Some information related to a number of selected runtem. For closer interlayer separation, the square type of lat-
is summarized in the table. The results of MC simulationstice (bcc in{100 or {110 plane is dominating, whereas for
correlate with the theoretical predictions of Relf3] and are  wider separations the hexagortédc in {111} plane or hcp

in very good agreement with the experiments with the planapatterns are observed.
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